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This paper presents a Mobility-Resistant, Efficient Clustering Approach (MRECA) for ad
hoc and sensor networks. MRECA can provide robustness against moderate node mobility
and at the same time render energy-efficiency. The identified clusterheads cover the whole
network and each node in the network can determine its cluster and only one cluster. The
algorithm terminates in deterministic time without iterations, and each node transmits only
one message during the algorithm. We prove analytically the correctness and complexity of
the algorithm, and simulation results demonstrate that MRECA is energy-efficient, resilient
against node mobility, and robust against synchronization errors

I. Introduction

Advances in wireless technology and portable com-
puting along with demands for greater user mobility
have provided a major impetus toward development of
self-organizing wireless multi-hop networks, referred
to as ad hoc networks, composed of a possibly very
large number of nodes. These nodes can be ei-
ther static or mobile, and are usually constrained
for the most critical resources, such as power and
computation capabilities. An ad hoc network is
comprised of wireless nodes and requires no fixed
infrastructure.

Communication between arbitrary endpoints in
an ad hoc network typically requires routing over
multiple-hop wireless paths due to the limited
wireless transmission range. Without a fixed in-
frastructure, these paths consist of wireless links
whose endpoints are likely to be moving indepen-
dently of one another. Consequently, mobile end
systems in an ad hoc network are expected to act
cooperatively to route traffic and adapt the net-
work to the dynamic state of its links and its mo-
bility patterns. Unlike fixed infrastructure net-
works where link failures are comparatively rare
events, the rate of link failure due to node mobil-
ity is the primary obstacle to routing in ad hoc
networks [15].

*A previous paper. with preliminary results [13] has appeared
in the Proceeding of the International Conference on Mobile Ad
Hoc and Sensor Networks (MSNOS5). This paper greatly extends
[13] with respects to various aspects, including local maintenance,
performance evaluation under various node transmission ranges
and node speeds, and synchronization error resilience. This sub-
mission presents the complete paper.

A closely related area of ad hoc networks is
wireless sensor networks (WSNs) [1], which com-
prise of a higher number of nodes scattered over
some region. Sensor nodes are typically less mo--
bile, and more densely deployed than mobile ad
hoc networks. Sensor nodes are usually heavily
resource-constrained (especially on power), irre-
placeable, and become unusable after failure or
energy depletion. Thus it is crucial to devise novel
energy-efficient solutions for topology organiza-
tion and routing that are scalable, efficient and
energy conserving in order to increase the overall
network longevity.

Given the potentially large number of mo-
bile devices, scalability becomes a critical issue.
Among the solutions proposed for scaling down
networks with a large number of nodes, network
clustering is among the most investigated. The
basic idea is to group network nodes that are in
physical proximity and thereby logically organize
the network into groups with smaller sizes, and
hence simpler to manage.

Clustering protocols have been investigated for
ad hoc and sensor networks in the literature
[2][3][12][14][20][21]. While these strategies dif-
fer in the criteria used to organize the clusters,
clustering decisions in each of these schemes are
based on static views of the network at the time
of each topology change; none of the proposed
schemes, even equipped with some local mainte-
nance schemes, is satisfactorily resistant to node
mobility beyond rare and trivial node movement.
However, node mobility is of great importance in
ad hoc sensor networks. One motivating example
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is related to battlefield surveillance, where sensor
nodes can move and organize among themselves
(while moving) to form ad hoc networks. Similar
scenarios also exist in disaster relief and search-
and-rescue applications. One of the objectives
of this work is to propose a clustering protocol
that is resilient against mild to moderate mobil-
ity where each node can potentially move.

In [22], a hybrid energy-efficient distributed
(HEED) clustering approach is presented for ad
hoc sensor networks, and the key ideas can be
summarized as two-folds. First, clusterhead selec-
tion is primarily based on the residual energy of
each node. Second, the clustering process entails
a number of rounds of iterations; each iteration
exploits some probabilistic methods for nodes to
elect to become a clusterhead. HEED is a fully
distributed protocol and it ensures that each node
can either elect to become a clusterhead or it joins
a cluster within its range. Further, it has been
shown that HEED outperforms generic clustering
protocols on various aspects. While HEED is one
of the most recognized energy-efficient clustering
protocols, it is pointed out that the clustering per-
formance can be further enhanced. In this work,
we present a distributed, Moblity-Resistant and
Energy-efficient Clustering Approach (MRECA)
that has better clustering efficiency. The proto-
col terminates without rounds of iterations as re-
quired by HEED, which makes MRECA a less
complex and more efficient algorithm. Further,
MRECA’s efforts of minimizing control overhead
render even smaller overhead than HEED, which
enables better energy-efficiency.

The remainder of this paper is organized as fol-
lows. Section II describes the network model and
states the problem that is addressed in this work.
Section IIT presents the MRECA protocol with
correctness and complexity analysis. Performance
evaluation is presented in Section IV, followed by
the descriptions on relevant work in Section V.
We conclude the paper in Section VI.

II. Problem Statement

An ad hoc wireless network is modeled as a set
V of nodes that are interconnected by a set E of
full-duplex directed communication links. V' and
E are changing over time when nodes move, join,
and leave. Two nodes are neighbors and have a
link between them if they are in the transmis-
sion range of each other [6]. Neighboring nodes

share the same wireless media, and each message
is transmitted by a local broadcast.

Nodes within an ad hoc network may move
at any time without notice, but we assume that
the node speed is moderate with respect to the
packet transmission latency and wireless trans-
mission range of the particular underlying net-
work hardware in use. Nodes may join, leave,
and rejoin an ad hoc network at any time and
any location; existing links may disappear, and
new links may be formed as the nodes move. Note
that we do not require the ad hoc networks to be
either static or quasi-stationary; any node in the
network can move independently with some mild
to moderate speed. It is our goal that the clus-
tering protocol can still generate decent clusters
under such mobility.

Let the clustering duration T¢ be the time in-
terval taken by the clustering protocol to clus-
ter the network. Let the network operation in-
terval To be the time needed to execute the in-
tended tasks. In many applications, To >> T,
which implies that the formed clusters need to be
maintained during the operation period in order
to reap the advantage of clustering. In general,
nodes that travel rapidly in the network may de-
grade the cluster quality because they alter the
node distribution in their clusters and make the
clusters unstable, possibly long before the end of
To. However, research efforts on clustering should
not be restricted only within the arena of static or
quasi-stationary networks where node movements
are rare and slow—some local maintenance mech-
anisms suffice to tackle such problems [12][14][20].
Rather, for those applications where T is not
much longer than T, we propose in this work an
efficient protocol that generates clusters in ad hoc
networks with mild to moderate node mobility.

In our model for sensor networks, though, the
sensor nodes are assumed to be quasi-stationary
and all nodes have similar capabilities. Nodes are
location unaware and will be left unattended after
deployment. Recharging is assumed not possible
and therefore, energy-efficient sensor network pro-
tocols are required for energy conservation and
prolonging network lifetime. For clustering, in
particular, every node can act as both a source
and a server (clusterhead), and a node only knows
about the servers that are within its reachable
range. A node may fail if its energy resource is
depleted, which motivates the need for rotating
the clusterhead role in some fair manner among
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all neighboring nodes for load balancing.

The problem of clustering is then defined as
follows. For an ad hoc or sensor network with
nodes set V, the goal is to identify a set of clus-
terheads that cover the whole network. Each and
every node v in set V must be mapped into ex-
actly one cluster, and each ordinary node in the
cluster must be able to directly communicate to
its clusterhead. The clustering protocol must be
completely distributed meaning that each node
independently makes its decisions based only on
local information. Further, the clustering must
terminate fast and execute efficiently in terms of
processing complexity and message exchange. Fi-
nally, the clustering algorithm must be resistant
to moderate mobility (in ad hoc networks) and at
the same time renders energy-efficiency, especially
for sensor networks.

III. MRECA Clustering Algorithm

The MRECA algorithm structure is somewhat
similar to that presented by Lin and Gerla [14]
and HEED protocol [22] in that each node broad-
casts its decision as the clusterhead in the neigh-
borhood based on some local information and
score function. The difference between MRECA
and the protocols in [14] and [22] lies in when and
how the nodes make such decisions and how the
score gets computed. In [14] the score is computed
" based on node identifiers, and each node holds its
message transmission until all its neighbors with
better scores (lower ID) have done so. Each node
stops its execution of the protocol if it knows that
every node in its closed neighborhood (including
itself) has transmitted. HEED utilizes node resid-
ual energy as the first criterion and takes a cost
function as the secondary criterion to compute the
score, and each node probabilistically propagates
tentative or final clusterhead announcements de-
pending on its probability and connectivity. The
execution of the protocol at each node will termi-
nate when the probability of self-election, which
gets doubled in every iteration, reaches 1.

It is assumed in [14] that the network topology
does not change during the algorithm execution,
and therefore it is valid for each node to wait until
it overhears the transmission from every higher-
scored neighbor. With some node mobility, how-
ever, this algorithm can halt since it is possible
that an initial neighboring node leaves the trans-
mission range for a node, say v, so that v cannot

overhear its transmission. v then has to wait end-
lessly according to the stopping rule.

Similar assumption exists in HEED so that each
node can experience rounds of iterations of ten-
tative or final clusterhead announcements before
entering the finalizing phase to choose its cluster.
However, it is observed that the rounds of itera-
tions are not necessary and can potentially harm
the clustering performance due to the possibly ex-
cessive number of transmitted announcements.

But [14] does provide important insights on
how the distributed clustering should be per-
formed among neighboring nodes: those nodes
with better scores should announce themselves
earlier than those with worse scores. We adopt
this idea in MRECA and we utilize a score func-
tion that captures node residual energy, connec-
tivity and identifier. Each node does not need
to hold its announcement until its better-scored
neighbors have done so; each node simply calcu-
lates a normalized delay based on its score and
transmits according to the computed delay. Each
node does not need to overhear every neighbor
in order to stop; rather, each node can termi-
nate its execution in a pre-determined time, es-
timated based on its computing capability and
node mobility. Further, each node only transmits
one message, rather than going through rounds
of iterations of probabilistic message announce-
ments. Given the common belief and the fact that
it is communication that consumes far more en-
ergy in sensor nodes compared with sensing and
computation, such savings on message transmis-
sions lead to better energy efficiency.

IIILA. MRECA Operation

Each node periodically transmits a Hello message
to identify itself, and based on such Hello mes-
sages, each node maintains a neighbor list. De-
fine the score function at each node as score =
w1 E + woC + wsl, where E stands for the node
residual energy, C stands for the node connectiv-
ity, I stands for the node identifier (for tie break-
ing), and weights follow "3 ; w; = 1. Values of
different factors (i.e. E, C and I) will be mapped
to some normalized values first, and the weights
can be assigned according to the relative impor-
tance of each factor—we put higher weight on
node residual energy in our work. The computed
score is then used to compute the delay for a node
to announce itself as the clusterhead. The higher
the score, the sooner the node will transmit. The
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computed delay is normalized between 0 and a
certain upper bound Dy,ax, which is a key param-
eter that needs to be carefully selected in practice,
such as the DIFS parameter in IEEE 802.11 MAC
protocol. After the clustering starts, the proce-
dure will terminate after time Titop, which is an-
other key parameter. The selection of parameters
Dpax and Tyiop needs to consider various issues
including node density, node computation capa-
bility, mobility and synchronization drifts. In our
work, we have not computed such parameters an-
alytically; the trial-and-simulation approach has
been used. In this regard, the default values of
the DIFS parameter in IEEE 802.11 MAC proto-
col have been used as references. We have tested
Dimax = 10 — 50ms and Tstop = 1 — 25, and the
protocol works well.

The distributed clustering algorithm at each
node is illustrated in the pseudo code fragments.
Essentially, clustering is done periodically and at
each clustering epoch, each node either immedi-
ately announces itself as a potential clusterhead
or it holds (schedules) for some delay time.

Upon receiving clustering messages, a node
needs to check whether the node ID and the clus-
ter ID embedded in the received message are the
same; same node and cluster ID means that the
message has been transmitted from a clusterhead.
Further, if the receiving node does not belong to
any cluster, and the received score is better than
its own, the node can mark down the advertised
cluster and wait until its scheduled announcement
to send its message.

If the receiving node currently belongs to some
cluster, and the received score is better than
its own score, two cases are further considered.
First, if the current node receiving a better-scored
message is not a clusterhead itself, as an ordi-
nary node, it can immediately mark down the
best cluster so far (line 8 in II) and wait un-
til its scheduled announcement. This node will
stay in its committed cluster after its announce-
ment. On the other hand, if the current node
is a clusterhead itself, receiving a better scored
message (due to variant delays and/or synchro-
nization drifts) means that this node may need to
switch to the better cluster. However, cautions
need to be taken here before switching since the
current node, as a clusterhead, may already have
other nodes affiliated with it. Therefore, inconsis-
tencies can occur if it rushes to switch to another
cluster. In our approach, we simply mark the ne-

cessity for switching (line 7 in II) and defer it to
the finalizing phase, where it checks to make sure
that no other nodes are affiliated with this node
in the cluster as the head, before switching can
occur. It is noted that the switch process man-
dates that a node needs to leave a cluster first
before joining a new cluster. Further, it is impor-
tant to point out that since each node announces
itself according to the computed score, this sec-
ond case is really the exception, rather than the
normal case. For example, lower scored nodes
may transmit earlier when synchronization drifts
among nodes are large. We include such exception
handling in MRECA to achieve better robustness.
In this (rare) case, the conversion procedure in-
curs one more message transmission for the con-
verted node. In normal operations, however, each
node transmits only one message.

In the finalizing phase, where each node is
forced to enter after Tyop, each node checks to see
if it needs to convert. Further, each node checks
if it already belongs to a cluster and will initiate
a new cluster with itself as the head if not so.

I. START-CLUSTERING-ALGORITHM(()

1 myScore = w1 E + woC + wsl;

2 delay = (1000 — myScore)/100;

3 if (delay < 0)

4 then beastClstr (myld, myCid, myScore);
5 else delayAnnouncement ();

6 Schedule clustering termination.

II. RECEIVE-CLUSTERING-MESSAGE (id, cid, score)
if (id == cid)
then if (myCid == NULL)
then if (score > myScore)
myCid = cid;
elseif (score > myScore)
then if (myld == myCid)
needConvert = true;
else markBestCluster();

0~ O O W N

I11. ACTUAL-ANNOUNCEMENT ()
1 bcastClstr (myId, myCid, score);

IV. FINALIZE-CLUSTERING- ALGORITHM()

1 if (needConvert)
2 then if (lamIHeadfor AnyOtherNode ())
then convtToNewClst ();
if (myCid == NULL)
then myCid = cid;
beastClstr (myld, myCid, score);

SO W
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III.LB. Correctness and Complexity

The protocol described above is completely dis-
tributed, and to prove the correctness of the al-
gorithm, we need to show that 1) the algorithm
terminates; 2) every node eventually determines
its cluster; and 3) in a cluster, any two nodes are
at most two-hops away.

Theorem III.1 Eventually
terminates.

Proof. After the clustering starts, the procedure
will stop receiving messages after time Tgop, and
enter the finalizing phase. Subsequently, the al-
gorithm will terminate.

MRECA protocol

In MRECA, a node does not need to wait (pos-
sibly in vain as in [14]) to transmit or terminate,
nor does it need to go through rounds of proba-
bilistic announcements as in HEED.

Theorem IIL.2 At the end of Phase IV, every
node can determine its cluster and only one clus-
ter.

Proof. Suppose a node does not determine its
cluster when entering Phase IV. Then the con-
dition at line 4 holds and the node will create a
new cluster and claims itself as the clusterhead.
So every node can determine its cluster. Now we
show that every node selects only one cluster. A
node determines its cluster by one of the follow-
ing three methods. First, it claims itself as the
clusterhead; second, it joins a cluster with a bet-
ter score when its cluster is undecided; and third,
it converts from one cluster to another. The first
two methods do not make a node join more than
one cluster, and the switch procedure checks for
consistency and mandates that a non-responsible
node (a node not serving as the head for a clus-
ter) can only leave the previous cluster first before
joining the new cluster. As a result, no node can
appear in two clusters.

One may argue that Theorem II1.2 does not suf-
fice for clustering purposes. For example, one can
easily invent an algorithm such that every node
creates a new cluster and claims itself as the clus-
terhead; obviously Theorem 2 holds. However,
our algorithm does much better than such triv-
ial clustering. Most of the clusters in our algo-
rithm are formed when executing line 4 or line
8 in Phase II, which means joining clusters with
better-scored heads. This is due to the fact that
the initial order of clusterhead announcements is

determined using the insight that better-scored
nodes should announce earlier.

Theorem II1.3 When clustering finishes, any
two nodes in a cluster are at most two-hops away
from each other.

Proof. The proof is based on the mechanisms by
which a node joins a cluster. A node, say v, joins
a cluster with head w only if v can receive an
announcement from w with a better score. In
other words, all ordinary nodes are within one-
hop from the clusterhead and the theorem follows.

Now we analyze why the algorithm is more ro-
bust under node mobility. The key idea that can
render such resilience is to abandon the wait-and-
send mechanism in [14]; instead, one round an-
nouncement is scheduled at each node based on
scores and the algorithm termination is forced.
With carefully selected parameters, the algorithm
can terminate much faster and be able to adapt to
moderate node mobility. We will verify such re-
silience in Section IV. To show that the algorithm
is energy-efficient, we prove that the communica-
tion and time complexity is low.

Theorem I11.4 In MRECA, each node trans-

mits only one message during the operation.

Proof. In the method that broadcasts cluster in-
formation (bcastClstr in the Pseudo code), a
Boolean variable iAlreadySent (not shown in
the Pseudo code) ensures that each node cannot
send more than once. Now we show that each
node will eventually transmit. In Phase I execu-
tion when nodes start the clustering, each node ei-
ther transmits immediately or schedules a delayed
transmission, which will get executed at line 1 in
Phase III. So each node will eventually transmit.

Theorem IIL.5 The time complexity of the algo-
rithm is O(|V).

Proof. From Phase II operations, each received
message is processed by a fixed number of compu-
tation steps without any loop. By Theorem II1.4,
each node only sends one message and therefore
there are only |V| messages in the system. Thus
the time complexity is O(|V]).

III.C. Local Maintenance

MRECA clustering is periodically triggered in or-
der to distribute energy consumption among net-
work nodes and adapt to the mobile nature of
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ad hoc networks. However, between clustering
periods, if most nodes are static and only very
few nodes can move slowly, re-clustering may be
too expensive. We propose the local maintenance
scheme to handle such rare and slow movements.

Essentially, two kinds of events can be detected
with such movement: link up and link down. Link
up events can be detected when new Hello mes-
sages are received from a new node, and link down
events can be detected when the expected Hello
messages are missing. Such events can be handled
according to the roles of the detecting nodes.

For link up event, if the detecting node is not a
clusterhead, then it does not need to handle this
event. But if the detecting node is itself a cluster-
head, it will invite the other node to join its clus-
ter by sending an invitation message (via broad-
cast) with necessary cluster information. After
receiving the invitation, if the node is a cluster-
head itself, it will ignore the message; otherwise,
it will decide whether or not to join the inviting
cluster depending on its current affiliation. If the
receiving node does not belong to any other clus-
ter, e.g. a newly powered-up node, it can simply
join the cluster; otherwise, it needs to check if it
can still contact its current clusterhead. If yes, no
need to switch; otherwise, it should join the invit-
ing cluster. The following pseudo codes illustrate
such ideas.

LINK-UpP-DETECT (DetectingNode D)

1 if (D is clusterHead)
2 then inviteToMyCluster(clusterInfo);
3 else do nothing.

LINK-UP-RECEIVING-INVITATION (clusterInfo)

1 if (thisNode != clusterHead)

2 then if (thisNode.clstName==NULL)

3 then acceptInvitation ();

4 elseif (checkPriorClstHead()==0K)
5 then ignorelnvitation ();

6 else acceptlnvitation ();

7 else ignorelnvitation();

For link down event, the behaviors of the detect-
ing nodes again depend on their roles in the clus-
ter, as shown in the following pseudo codes. For a
clusterhead, it will check if the other node resides
in the same cluster with itself: if yes, the other
node cannot be a clusterhead and it can simply
removes the other node from the cluster; other-
wise, it does not need to do anything. But if the
detecting node is just an ordinary node, it does

14, 14
o

10 L))

Figure 1: Local maintenance example.

not need to do anything special to tackle the link
down event, given that the algorithm generates
only 2-hop clusters. Note that if we aim to gener-
ate k-hop clusters, with k > 2, then such receiving
node may need to propagate such link down mes-
sages so that other nodes can be informed, and
the clusterhead can check if the k-hop condition
in the cluster still holds.

LDOWN-DETECT (DetectingNd D, otherNd O)

1 if (D is clusterHead)

2 then if (nodeInMyCluster(O))

3 DRemovesNodeFromCluster(O);
4 else do nothing.

Fig.1 shows a simple example, where initially
node 8 does not belongs to the top cluster (it is
in its own cluster), and as node 8 moves into the
top region, it gets invited into the top cluster.

Note, however, that the described local mainte-
nance procedures do not abide by the algorithm
shown in Section III.A and may produce a poor
quality of cluster structure after repeated use, in
which case re-clustering will execute the MRECA |
algorithm and reconstruct quality clusters.

IV. Performance Evaluation

In this section, we evaluate the MRECA protocol
via simulations. We use an in-house simulation
tool called agent-based ad hoc network simula-
tor (NetSim) to implement our protocol and the
protocols proposed by Krishna et al. [12], Lin and
Gerla [14], and HEED [22] for comparisons. Com-
pared with other network simulators (for instance
ns-2), the most important feature of NetSim is its
capability of handling massive ad hoc wireless net-
works and sensor networks. In our work, we use
network allocation vector (NAV) based protocol
(i.e. IEEE 802.11) for medium access control.
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In general, for any clustering protocol, it is un-
desirable to create single-node clusters. Single-
node clusters arise when a node is forced to rep-
resent itself (because of not receiving any clus-
terhead messages). A cluster may also contain a
single node if this node decides to act as a cluster-
head and all its neighbors register themselves with
other clusterheads. While other protocols will
generate lots of single-node clusters as node mo-
bility gets more aggressive, our algorithm shows
much better resilience under such situations.

In our simulations, random graphs are gener-
ated so that nodes are randomly dispersed in
a 1000m x 1000m region and the transmission
range of each node is bound to 250m. We in-
vestigate the clustering performance under differ-
ent node mobility patterns, and the node speed
ranges from 0 to 50 m/s. In particular, we simu-
late the following scenarios with maximum node
speed set as 0, 0.1, 1, 5, 10, 20, 30, 40, and 50
m/s. For each scenario, each node takes the same
maximum speed and a large number of random
graphs are generated. Simulations are run and
results are averaged over these random graphs.

We have considered the following metrics for
performance comparisons: 1) the average over-
head (in number of protocol messages); 2) the ra-
tio of the number of clusters to the number of
nodes in the network; 3) the ratio of the single-
node clusters to the number of nodes in the net-
work; and 4) the average residual energy of the
selected clusterheads.

We first look at static scenarios where nodes
do not move and the quasi-stationary scenarios
where the maximum node speed is bounded at
0.1m/s. We compare four protocols with respect
to the ratio of the number of clusters, and the
number of single-node clusters, to the number of
nodes in the network. We choose [14] proposed by

X T ERLETTITPPrT e R LTI T STV

§ ¥~ MRECA
g —©—HEED :
g 2 .................................. MRECNH EED

o T4 ° o o

*o
3
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Figure 3: Average number of transmissions per node.

Lin & Gerla (referred to as LIN) as a representa-
tive for those general clustering protocols [2][3],
and choose Krishna’s algorithm (KRISHNA) [12]
to represent dominating-set based clustering pro-
tocols [16]-[21]. For energy-aware protocols, we
choose HEED [22] to compare with MRECA.

Fig. 2 shows that KRISHNA has the worst
clustering performance with the highest cluster-
to-nodes ratio, while MRECA and LIN possess
the best performance. HEED performs in be-
tween. In addition, all four protocols perform
consistently under (very) mild node mobility.

During our simulations, both LIN and KR-
ISHNA fail to generate clusters as we increase
the maximum node speed. This is expected. In
LIN, a node will not transmit its message un-
til all its better-scored neighbors have done so;
the algorithm will not terminate if a node does
not receive a message from each of its neighbors.
Node mobility can make the holding node wait
forever. In KRISHNA, in order to compute clus-
ters, each node needs accurate information of the
entire network topology, facilitated by network-
wide link state update which by itself is extremely
vulnerable to node mobility. In contrast, we found
that both HEED and MRECA are quite resilient
to node mobility in that they can generate de-
cent clusters even when each node can potentially
move independently of others. The following fig-
ures compare the performance of MRECA and
HEED under different node mobility.

Fig. 3 shows that for MRECA, the number of
protocol messages for clustering remains one per
node, regardless of the node speed, as proven
in Theorem IIl.4. For HEED, the number of
protocol messages is roughly 1.8 for every node
speed, and a node running MRECA transmits
about 56% number of messages as that in HEED
(shown as MRECA/HEED in Fig. 3). The fact
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that HEED incurs more message transmissions
is due to the possibly many rounds of iterations
(especially when node power is getting reduced),
where each node in every iteration can poten-
tially send a message to claim itself as the can-
didate clusterhead [22]. Reducing the number of
transmissions is of great importance, especially
in sensor networks, since it would render bet-
ter energy efficiency and fewer packet collisions
(e.g. CSMA/CA type MAC in IEEE 802.11).
Fig. 4 and Fig. 5 illustrate the ratio of the num-
ber of clusters and single node clusters to the total
number of nodes in the network. In both cases,
MRECA outperforms HEED.

Note that both MRECA and HEED perform
quite consistently under different maximum node
speed and this is not coincident: a node in both
MRECA and HEED will stop trying to claim it-
self as the potential clusterhead after some initial
period (delayed announcement in MRECA and
rounds of iterations in HEED) and enter the fi-
nalizing phase. As a result, the local informa-
tion gathered, which serves as the base for clus-
tering, is essentially what can be gathered within
the (roughly invariant) initial period which leads
to consistent behaviors under different node mo-
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Figure 6: Average clusterhead energy.

bility. It is this consistency in performance that
we conclude that both MRECA and HEED are
resilient to node mobility.

Further, we compare MRECA and HEED with
respect to the (normalized) average clusterhead
energy in Fig. 6. Again both MRECA and HEED
perform quite consistently and MRECA outper-
forms HEED with about doubled the clusterhead
residual energy. This is in accordance with Fig. 5
where MRECA consistently incurs fewer message
transmissions than HEED. Note that the compar-
isons here are only informative than quantitative
without detailed modeling of lower layer protocols
and power expenses. However, the key insights
are certainly conveyed. Particularly, in sensor
networks, sending fewer messages by each node in
MRECA while achieving the intended goal means
energy-efficiency and longer node lifetime, since
transmission typically consumes orders of magni-
tude more energy than processing does.

In addition, HEED may possess an undesirable
feature in its protocol operation over time. Sup-
pose no re-charging exists in a sensor network.
Over time, the energy of each node fades. The
decrease of residual energy leads to a uniformly
smaller probability of transmission in HEED for
each node, which implies more rounds of itera-
tions overall. As a result, more announcements
could be sent and more energy could be con-
sumed, which can lead to more messages sent and
more energy consumed in the next round of clus-
tering. MRECA, on the contrary, does not pos-
sess this potential drawback even with energy fad-
ing, since each node only sends one message dur-
ing the operation.

We further extend our simulations to investi-
gate how MRECA performs under different node
speeds and transmission ranges. Fig. 7 shows
that MRECA performs quite consistently in terms

8 Mobile Computing and Communications Review, Volume 10, Number 2
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Figure 8: Cluster ratio under different ranges.

of the ratio of clusters under various node speeds;
the larger the transmission range, the lower the
cluster ratio (as expected). Such observations can
also be validated in Fig. 8, where the cluster ra-
tio curves under different node speeds track each
other quite closely, and the ratio of clusters de-
creases as the transmission range increases. Such
observations further verify the unique resilience of
MRECA against node mobility.

Fig. 9 and Fig. 10 illustrate the average cluster-
head (residual) energy under different node speeds
and transmission ranges. It can be seen that the
clusterhead residual energy are quite consistent
under different node speeds (Fig. 9). This is in
accordance with the fact that, regardless of node
mobility, each node only sends one message in
the clustering process. Note that, however, we
do not include a more elaborate power consump-
tion model to illustrate the residual energy under
different transmission ranges. Using a uniform
power model, the residual energy curves track
each other fairly closely. Better power models will
be incorporated in future work.

In general, it is undesirable to extend a node’s
transmission range unnecessarily in wireless ad
hoc and sensor networks. On the other hand,
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Figure 9: Average energy under different speeds.
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Figure 10: Average energy under different ranges.

larger range incurs better clustering performance.
To tackle this trade-off, we propose the energy-
conservative approach: select the least amount of
energy that brings about the largest performance
improvement. For example, from Fig. 7 we can
tell that the ratio of clusters drops from about 0.5
to about 0.3 with range increases from 150m to
250m, while the ratio drops only to about 0.2 if
the range increases further to 450m. As a result,
it might not be worthwhile to increase the range
over around 250m. This insight can be further
validated by Fig. 8, where we should choose the
range with the steepest slope in the figure, indi-
cating the greatest improvement on the clustering
performance. Again, we need to choose the range
around 250m. Such energy-conservative approach
is not only of simulation interests; practical de-
ployment of MRECA should follow such insights.

It can be observed that in MRECA the dis-
persed delay timers for clusterhead announce-
ments assume the existence of a global synchro-
nization system. While this might not be a prob-
lem or a constraint for many military communi-
cation equipment, synchronization could become
trickier for less equipped devices (e.g. commercial
PDAs and nodes in the sensor networks).
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However, we can show that our MRECA
scheme is in fact quite resilient against synchro-
nization drifts. It has been shown in the literature
[8] that synchronization errors can be controlled
within the range of 10 us (with minimum efforts)
for nodes in sensor networks, which have largely
the most stringent computing and communicating
resources. We further relax this time range and
put up to 2ms of errors on the delay timers. Fig.
11 and Fig. 12 illustrate the simulation results.
We can easily observe that with 1ms and 2ms
synchronization errors, the protocol performance
tracks the case of a perfect synchronization in an
indistinguishable manner.

Finally, all the previous simulation results are
obtained assuming perfect wireless channels, i.e.
no packet loss will occur. We now investigate
the performance of MRECA under lossy wireless
channels, e.g. due to irregular radio propagation
induced by mobility. We simulate different loss
rates and the results are shown in Fig. 13. As
can be seen, the protocol performance in terms
of cluster ratio only decreases in a very graceful
manner, even with 5% channel loss, which is quite
severe in the sense of wireless transmission.
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Figure 13: Resilience against losses—cluster ratio.

V. Related Work

Cluster organization has been investigated for ad
hoc networks since their appearance. Among scal-
able routing mechanisms in ad hoc and sensor net-
works, dominating-set-based clustering [16]-[21]
surfaces as one of the most promising approaches.
A subset of vertices in an undirected graph is a
dominating set if every vertex not in the sub-
set is adjacent to at least one vertex in the sub-
set. Moreover, this dominating set should be con-
nected for ease of the routing process. The main
advantage of dominating-set-based routing is that
it simplifies the routing process to the one in a
smaller subnetwork generated from the connected
dominating set (CDS).

Krishna et al. [12] proposed a scheme that or-
ganizes the topology into clusters for routing in a
dynamic network. A k-cluster is defined to be a
subset of nodes which are mutually reachable by
a path of length at most k, for some fixed k. A k-
cluster with k = 1 is a clique. During the cluster
formation, each node needs information of the en-
tire network topology. As a result, for larger net-
works the amount of information to be updated
at each node imposes significant overhead on the
communication bandwidth. For mobile ad hoc
networks, clique formation usually results in very
small clusters, unless the network is really dense.

Sivakumar et al. [16][17][18] proposed a series
of 2-level hierarchical routing algorithms for ad
hoc wireless networks. The idea is to identify
a subnetwork that forms a minimum connected
dominating set (MCDS). Each node in the sub-
network is called a spine node and keeps a rout-
ing table that captures the topological structure
of the whole network. In this approach, a con-
nected dominating set is found by growing a tree
T starting from a vertex with the maximum node
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degree. Then, a vertex v in T that has the max-
imum number of neighbors not in T is selected.
Finally, a spanning tree is constructed and non-
leaf nodes form a connected dominating set.

In [20] and [21] the authors proposed a series of
simple and efficient algorithms that can quickly
build a backbone directly in ad hoc networks.
This approach uses a localized algorithm called
the marking process where hosts interact with
others in restricted vicinity. The resultant dom-
inating set derived from the marking process is
further reduced by applying two dominant prun-
ing rules. The low complexity of this algorithm
translates into a low communication and compu-
tation cost; but the algorithm tends to create very
large CDSs.

Basagni [2] proposed to use nodes’ weights in-
stead of lowest ID or node degrees in clusterhead
decisions. Weight is defined by mobility related
parameters, such as speed. Basagni [3] further
generalized the scheme by allowing each cluster-
head to have at most k neighboring clusterheads
and described an algorithm for finding a maximal
weighted independent set in wireless networks.
Ref. [9] generalized the cluster definition so that
a cluster contains all nodes that are at distance
at most k hops from the initiator. They proposed
to combine connectivity and node ID for choosing
the clusterhead. In [4], the authors compared sev-
eral clustering and backbone formation protocols
in large scale ad hoc networks.

Recently, Chan [5] described an emergent clus-
tering algorithm for highly uniform cluster forma-
tion (ACE). ACE tries to minimize overlap be-
tween clusters, and it claims good performance in
three rounds of algorithm iterations. But a bet-
ter way is to efficiently generate clusters without
overlap, rather than reducing it—our MRECA al-
gorithm induces no overlap. Further, MRECA
achieves good performance with only one round
of iteration.

One of the first protocols that use clustering
for network longevity is the Low-Energy Adap-
tive Clustering Hierarchy (LEACH) protocol [10].
In LEACH, a node elects to become a cluster-
head randomly according to a target number of
clusterheads in the network and its own resid-
ual energy, and energy load get evenly distributed
among the sensors in the network. LEACH clus-
tering proved to be 4 to 8 times more effective in
prolonging the network lifetime than direct com-
munication or minimum energy transfer. A limi-

tation of this scheme is that it requires all current
clusterheads to be able to transmit directly to the
sink. Improvements to the basic LEACH algo-
rithms include multi-layer LEACH-based cluster-
ing and the optimal determination of the number
of clusterheads that minimizes the energy con-
sumption throughout the network.

VI. Conclusion and Future Work

In this paper we present a distributed, efficient
clustering algorithm that works with resilience to
node mobility and synchronization errors, and at
the same time renders energy efficiency. The al-
gorithm terminates fast, has low time complex-
ity, and generates non-overlapping clusters with
good clustering performance. Our approach is
applicable to both mobile ad hoc networks and
energy-constrained sensor networks. The cluster-
ing scheme provides a useful service that can be
leveraged by different applications to achieve scal-
ability. For example, our approach can be effec-
tive for sensor applications requiring efficient data
aggregation and prolonged network lifetime, such
as environmental monitoring, and efficient data
fusion in many applications.

Our future work includes more extensive sim-
ulations on larger scale networks with elaborate
power models, extensions to k-hop clusters, and
integration of clustering with network applica-
tions, for example cooperative intrusion detection
and multi-tiered secure group communications.
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